Effective radii of noble gas atoms in silicates from first-principles molecular simulation

نویسندگان

  • Liqun Zhang
  • James a. Van Orman
  • danieL J. Lacks
چکیده

An understanding of how noble gas atoms are dissolved in mantle minerals and melts is necessary to infer geological information from the constraints provided by noble gas geochemistry. For this purpose, first-principles molecular simulations are carried out on liquid and crystalline (stishovite) silica systems with dissolved noble gas atoms (He, Ne, Ar, Kr, and Xe). The first principles nature of the simulations, which do not involve empirical force field parameters, enables the determination of the effective radii and structural environments of the noble gas atoms. The noble gas atoms are shown to be highly compressible, so that their effective radii depend strongly on the molar volume of the system (which in turn depends on pressure). Due to the continuous nature of interatomic forces, the effective radii also depend on the extent to which the surrounding atoms can relax in response to the presence of the noble gas atom. In this regard, different definitions of effective radii are relevant in different situations: “equilibrium radii” that correspond to the optimal interatomic distances at the molar volume of the system, and “repulsive wall” radii that correspond to the interatomic distances where the interatomic potentials of mean force change from attractive to repulsive at that molar volume. The equilibrium radii determine the interatomic distances in a melt, and the repulsive wall radii determine the interatomic distances for interstitial sites in a crystal. Based on these effective radii, the structural environment surrounding the noble gas atoms at high pressure is shown to correspond to a close packing of O atoms around the central noble gas atom. Compression of the noble gas atoms is shown to correspond closely to the compression of the porosity within the silicate melt structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic radii of noble gas elements in condensed phases

Neutral atomic radii of dissolved noble gas elements in condensed phases are obtained by treating the neutral atoms as "ions" of zero oxidation state and by interpolation from a plot of radius vs. oxidation state for isoelectronic ions. The major assumption is that the radius of an ion or a neutral atom having an electronic configuration of a noble gas element depends primarily on the interacti...

متن کامل

Structural properties of molten silicates from ab initio molecular-dynamics simulations: comparison between CaO-Al2O3-SiO2 and SiO2

We present the results of first-principles molecular-dynamics simulations of molten silicates, based on the density functional formalism. In particular, the structural properties of a calcium aluminosilicate [ CaO-Al2O3-SiO2 ] melt are compared to those of a silica melt. The local structures of the two melts are in good agreement with the experimental understanding of these systems. In the calc...

متن کامل

Detection of gas atoms with carbon nanotubes

Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop newdesigns of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are inve...

متن کامل

Hydrogen storage capacity of Si-decorated B80 nanocage: firstprinciples DFT calculation and MD simulation

Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 ca...

متن کامل

Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface

On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax  and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009